Title
Algoritmi za brzo aproksimativno spektralno učenje
Creator
Trokicić, Aleksandar B., 1989-
CONOR:
79656969
Copyright date
2021
Object Links
Select license
Autorstvo-Nekomercijalno-Bez prerade 3.0 Srbija (CC BY-NC-ND 3.0)
License description
Dozvoljavate samo preuzimanje i distribuciju dela, ako/dok se pravilno naznačava ime autora, bez ikakvih promena dela i bez prava komercijalnog korišćenja dela. Ova licenca je najstroža CC licenca. Osnovni opis Licence: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/deed.sr_LATN. Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/legalcode.sr-Latn
Language
Serbian
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane:
Other responsibilities
član komisije
Ćirić, Miroslav
član komisije
Ognjanović, Zoran
član komisije
Janković, Dragan
član komisije
Petković, Marko
Academic Expertise
Prirodno-matematičke nauke
Academic Title
-
University
Univerzitet u Nišu
Faculty
Prirodno-matematički fakultet
Group
Odsek za matematiku i informatiku
Alternative title
Algorithms for fast approximate spectral learning
: doctoral dissertation
Publisher
[А. B. Тrocikić]
Format
115, [10] listova
description
Biobibliografija: list. 114-115;
Bibliografija: list. 108-113.
description
Artificial Intelligence; Machine Learning
Abstract (en)
This thesis presents learning algorithms which use the
information stored in the spectrum (eigenvalues and
eigenvectors) of a matrix derived from the input set. Matrices
in question are graph matrices or kernel matrices. However, the
algorithms which use these matrices have either a quadratic or
cubic time complexity and quadratic memory complexity.
Therefore, in this thesis the algorithms will be presented that
approximate those matrices and reduce the time and memory
complexity to the linear one. Also, these algorithms will be
compared with the other algorithms that solve this problem, and
their empirical and theoretical analysis will be presented.
Authors Key words
klasterovanje, kernel regresija, spektralne metode,
aproksimacija, Nistromova metoda, Laplasova matrica
Authors Key words
clustering, kernel regression, spectral methods, approximation,
Nystrom method, Laplacian matrix
Classification
004.8(043.3)
Type
Tekst
Abstract (en)
This thesis presents learning algorithms which use the
information stored in the spectrum (eigenvalues and
eigenvectors) of a matrix derived from the input set. Matrices
in question are graph matrices or kernel matrices. However, the
algorithms which use these matrices have either a quadratic or
cubic time complexity and quadratic memory complexity.
Therefore, in this thesis the algorithms will be presented that
approximate those matrices and reduce the time and memory
complexity to the linear one. Also, these algorithms will be
compared with the other algorithms that solve this problem, and
their empirical and theoretical analysis will be presented.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.