Title
Analiza nelinearne dinamike mehaničkih struktura sa prigušenjem frakcionog reda primenom aproksimativnih metoda
Creator
Nešić, Nikola D., 1986-
CONOR:
107106825
Copyright date
2023
Object Links
Select license
Autorstvo-Nekomercijalno-Bez prerade 3.0 Srbija (CC BY-NC-ND 3.0)
License description
Dozvoljavate samo preuzimanje i distribuciju dela, ako/dok se pravilno naznačava ime autora, bez ikakvih promena dela i bez prava komercijalnog korišćenja dela. Ova licenca je najstroža CC licenca. Osnovni opis Licence: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/deed.sr_LATN. Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/legalcode.sr-Latn
Language
Serbian
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane: 06.10.2023.
Other responsibilities
Academic Expertise
Tehničko-tehnološke nauke
University
Univerzitet u Nišu
Faculty
Mašinski fakultet
Group
Katedra za mehaniku
Alternative title
Nonlinear dynamics analysis of mechanical structures with fractional order damping by approximation methods
: doctoral dissertation
Publisher
[N. D. Nešić]
Format
XII, 133 str.
description
Biografija autora: str. 133
Bibliografija: str. 115-132
description
Vibration of systems with fractional damping
Abstract (en)
The thesis investigates dynamical behavior of two different mechanical
models, nano-beam on fractional viscoelastic foundation
and dynamical mass damper, which can be reduced to the nonlinear
fractional differential Duffing-type equation systems. Incremental
harmonic balance method with continuation method are used to
obtain amplitude-frequency response of the system’s steady state
solutions. Stability of periodic orbits is investigated in special cases
by using Floquet theory of stability. As comparative methods
for models described with fractional differential equations are used
among others the perturbation method of multiple time scales and
Newmark method. The influence of different system parameters on
dynamic behavior is examined.
Authors Key words
nelinearna dinamika, nelinearne oscilacije, strukturna meha-
nika, nelokalna teorija, metoda inkrementalnog harmonijskog
balansa, Njumark metoda, metoda višestrukih vremenskih ska-
la, frakciono prigušenje, Dufingov oscilator
Authors Key words
nonlinear dynamics, nonlinear vibration, structural mechanics,
nonlocal theory, incremental harmonic balance method, Newmark
method, multiple scales method, fractional damping, Duffing oscillator
Classification
530.182:531.31]:517.9(043.3)
Subject
P190
Type
Tekst
Abstract (en)
The thesis investigates dynamical behavior of two different mechanical
models, nano-beam on fractional viscoelastic foundation
and dynamical mass damper, which can be reduced to the nonlinear
fractional differential Duffing-type equation systems. Incremental
harmonic balance method with continuation method are used to
obtain amplitude-frequency response of the system’s steady state
solutions. Stability of periodic orbits is investigated in special cases
by using Floquet theory of stability. As comparative methods
for models described with fractional differential equations are used
among others the perturbation method of multiple time scales and
Newmark method. The influence of different system parameters on
dynamic behavior is examined.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.