Title
Uopšteni inverzi i kvazihiponormalne matrice u prostorima sa nedefinisanim skalarnim proizvodom
Creator
Radojević, Ivana M. 1983-
Copyright date
2016
Object Links
Select license
Autorstvo-Nekomercijalno-Bez prerade 3.0 Srbija (CC BY-NC-ND 3.0)
License description
Dozvoljavate samo preuzimanje i distribuciju dela, ako/dok se pravilno naznačava ime autora, bez ikakvih promena dela i bez prava komercijalnog korišćenja dela. Ova licenca je najstroža CC licenca. Osnovni opis Licence: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/deed.sr_LATN. Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-nc-nd/3.0/rs/legalcode.sr-Latn
Language
Serbian
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane: 08.12.2016.
Other responsibilities
mentor
Rakočević, Vladimir 1953-
član komisije
Đorđević, Dragan 1970-
član komisije
Đolović, Ivana
član komisije
Živković-Zlatanović, Snežana 1965-
član komisije
Mosić, Dijana 1981-
Academic Expertise
Prirodno-matematičke nauke
Academic Title
-
University
Univerzitet u Nišu
Faculty
Prirodno-matematički fakultet
Group
Odsek za matematiku i informatiku
Alternative title
Generalized inverses and quasihyponormal matrices in spaces with indefinite inner product
Publisher
[I. M. Radojević]
Format
99 listova
description
Biografija autora: list 99
description
mathematical analysis
Abstract (en)
In this dissertation the original results in matrix theory and
general inverses theory in finite-dimensional indefinite inner
product spaces are presented. Linear relations are used for the
extension of some results in degenerate case.
In the first part a generalization of the notion of normality and
hyponormality is established.Quasihyponormal and strongly
quasihyponormal matrices and linear relations are defined in
nondegenerate and degenerate indefinite inner product
spaces. A characterization of quasihyponormal and strongly
quasihyponormal matrices in those spaces is given.
In the second part a Moore-Penrose inverse of matrices and
linear relations in degenerate indefinite inner product spaces is
defined. Some properties of this inverse for matrices in
degenerate case are shown.
Results in the third part concerns EP matrices in indefinite
inner product spaces with respect to indefinite matrix product.
These matrices are J-EP matrices. The connection among EP,
J-EP matrices and the reverse order law for the Moore-
Penrose inverse of the indefinite matrix product is studied.
Authors Key words
Funkcionalna analiza
Authors Key words
functional analysis
Classification
517.986.3(043.3)
Type
Elektronska teza
Abstract (en)
In this dissertation the original results in matrix theory and
general inverses theory in finite-dimensional indefinite inner
product spaces are presented. Linear relations are used for the
extension of some results in degenerate case.
In the first part a generalization of the notion of normality and
hyponormality is established.Quasihyponormal and strongly
quasihyponormal matrices and linear relations are defined in
nondegenerate and degenerate indefinite inner product
spaces. A characterization of quasihyponormal and strongly
quasihyponormal matrices in those spaces is given.
In the second part a Moore-Penrose inverse of matrices and
linear relations in degenerate indefinite inner product spaces is
defined. Some properties of this inverse for matrices in
degenerate case are shown.
Results in the third part concerns EP matrices in indefinite
inner product spaces with respect to indefinite matrix product.
These matrices are J-EP matrices. The connection among EP,
J-EP matrices and the reverse order law for the Moore-
Penrose inverse of the indefinite matrix product is studied.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.